(x-1)(x)=(2^20)(3^6)(5^5)(7^5)

Simple and best practice solution for (x-1)(x)=(2^20)(3^6)(5^5)(7^5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)(x)=(2^20)(3^6)(5^5)(7^5) equation:



(x-1)(x)=(2^20)(3^6)(5^5)(7^5)
We move all terms to the left:
(x-1)(x)-((2^20)(3^6)(5^5)(7^5))=0
determiningTheFunctionDomain (x-1)x-2^203^65^57^5=0
We add all the numbers together, and all the variables
(x-1)x=0
We multiply parentheses
x^2-1x=0
a = 1; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*1}=\frac{0}{2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 8x+7=7x+3 | | 8x+7=5x+40 | | 2/7x^2+9/7x−8=0 | | (8x+7)=180 | | 1/8(3x-3)=(6-x) | | (3/w^2+2w-8)+(2/w^2+w-6)=4/(w^2+7w+12) | | 8/5r-2=3/5r | | 7x+4=3x-11 | | (5r+30)/20=(5r-30)/5 | | 14.1-0.282x=x | | (6x+20)=180 | | x-20+x/3+x=90 | | 16-5y=7 | | x+1/3x+x-20=90 | | 11x-5x=3x+4 | | 3*(2x-6)=5x-20 | | (0.25-0.5/x)-1=0.5 | | 4y-15=17y= | | 3y-64=152 | | 9x+3=5x+5 | | x^2-24x=128 | | 2x+x/3=110 | | (D^3-3D+16)y=0 | | 3x+22=90 | | 8x-x/2=3 | | -5x+2/x-3=4 | | (T+4)(t-15)=0 | | b^2+6b=14 | | 9/5x+32=Y | | |3(x+4)|+8=17 | | x=x-6x+72 | | x=x-5x+56 |

Equations solver categories